The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X X^3 X 1 0 X^3+X^2 0 X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3+X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^2 X^3+X^2 X^3 X^2 X^2 0 X^2 0 X^3+X^2 0 X^2 X^2 0 X^3 0 X^3 0 0 0 0 X^3+X^2 X^2 0 X^3+X^2 X^2 0 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3 0 X^3+X^2 X^2 0 0 X^3+X^2 X^2 0 X^2 X^2 0 X^2 X^3+X^2 0 X^3+X^2 X^2 X^2 X^3 0 X^3+X^2 X^3 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 0 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 0 0 generates a code of length 51 over Z2[X]/(X^4) who´s minimum homogenous weight is 48. Homogenous weight enumerator: w(x)=1x^0+43x^48+16x^49+203x^50+22x^51+164x^52+16x^53+20x^54+8x^55+16x^56+1x^66+2x^67 The gray image is a linear code over GF(2) with n=408, k=9 and d=192. This code was found by Heurico 1.16 in 0.094 seconds.